Energetic Demands Regulate Sleep-Wake Rhythm Circuit Development

bioRxiv [Preprint]. 2023 Sep 22:2023.09.19.558472. doi: 10.1101/2023.09.19.558472.

Abstract

Sleep and feeding patterns lack a clear daily rhythm during early life. As diurnal animals mature, feeding is consolidated to the day and sleep to the night. Circadian sleep patterns begin with formation of a circuit connecting the central clock to arousal output neurons; emergence of circadian sleep also enables long-term memory (LTM). However, the cues that trigger the development of this clock-arousal circuit are unknown. Here, we identify a role for nutritional status in driving sleep-wake rhythm development in Drosophila larvae. We find that in the 2nd instar (L2) period, sleep and feeding are spread across the day; these behaviors become organized into daily patterns by L3. Forcing mature (L3) animals to adopt immature (L2) feeding strategies disrupts sleep-wake rhythms and the ability to exhibit LTM. In addition, the development of the clock (DN1a)-arousal (Dh44) circuit itself is influenced by the larval nutritional environment. Finally, we demonstrate that larval arousal Dh44 neurons act through glucose metabolic genes to drive onset of daily sleep-wake rhythms. Together, our data suggest that changes to energetic demands in developing organisms triggers the formation of sleep-circadian circuits and behaviors.

Publication types

  • Preprint