Expression and characterization of an organic solvent tolerant recombinant lipase from Staphylococcus capitis SH6 for food wastewater treatment

Prep Biochem Biotechnol. 2023 Nov 8:1-13. doi: 10.1080/10826068.2023.2279111. Online ahead of print.

Abstract

The study illustrated here aims on an organic solvent tolerant lipase from Staphylococcus capitis (SCL). The gene part, encoding the mature lipase, was cloned and sequenced. The concluded polypeptide sequence, equivalent to the protein, consist of 388 amino acid residues with a molecular mass of about 45 kDa. A structure-based alignment of the SCL amino acid sequence shows high identities with those many staphylococcal lipases. From this alignment of sequences, the catalytic triad (Ser 117, Asp 308 and His 347) of SCL could be identified. The mature part of the SCL was expressed in Escherichia coli and the recombinant lipase (r-SCL) was purified to homogeneity. The purified r-SCL presented a quite interesting stability at low temperatures (< 30 °C) and the enzyme was found to be highly stable in polar organic solvent and at a pH ranging from 3 to 12. After that, we have demonstrated that the recombinant enzyme may be implicated in the biodegradability of oily wastewater from effluents of fast-food restaurants; the maximum conversion yield into fatty acids obtained at 30 °C, was 65%.

Keywords: Biodegradation; heterogeneous expression; oily wastewater; organic solvent tolerant lipase; pH stability; purification.