Signatures of tRNAGlx -specificity in proteobacterial glutamyl-tRNA synthetases

Proteins. 2023 Nov 12. doi: 10.1002/prot.26634. Online ahead of print.

Abstract

The canonical function of glutamyl-tRNA synthetase (GluRS) is to glutamylate tRNAGlu . Yet not all bacterial GluRSs glutamylate tRNAGlu ; many glutamylate both tRNAGlu and tRNAGln , while some glutamylate only tRNAGln and not the cognate substrate tRNAGlu . Understanding the basis of the unique specificity of tRNAGlx is important. Mutational studies have hinted at hotspot residues, both on tRNAGlx and GluRS, which play crucial roles in tRNAGlx -specificity. However, its underlying structural basis remains unexplored. The majority of biochemical studies related to tRNAGlx -specificity have been performed on GluRS from Escherichia coli and other proteobacterial species. However, since the early crystal structures of GluRS and tRNAGlu -bound GluRS were from non-proteobacterial species (Thermus thermophilus), proteobacterial biochemical data have often been interpreted in the context of non-proteobacterial GluRS structures. Marked differences between proteobacterial and non-proteobacterial GluRSs have been demonstrated; therefore, it is important to understand tRNAGlx -specificity vis-a-vis proteobacterial GluRS structures. To this end, we solved the crystal structure of a double mutant GluRS from E. coli. Using the solved structure and several other currently available proteo- and non-proteobacterial GluRS crystal structures, we probed the structural basis of the tRNAGlx -specificity of bacterial GluRSs. Specifically, our analyses suggest a unique role played by the tRNAGlx D-helix contacting loop of GluRS in the modulation of tRNAGln -specificity. While earlier studies have identified functional hotspots on tRNAGlx that control the tRNAGlx -specificity of GluRS, this is the first report of complementary signatures of tRNAGlx -specificity in GluRS.

Keywords: E. coli; GluRS; protein-RNA interaction; proteobacteria; tRNA-Gln; tRNA-discrimination.