Sex differences in intrinsic functional cortical organization reflect differences in network topology rather than cortical morphometry

bioRxiv [Preprint]. 2023 Nov 23:2023.11.23.568437. doi: 10.1101/2023.11.23.568437.

Abstract

Brain size robustly differs between sexes. However, the consequences of this anatomical dimorphism on sex differences in intrinsic brain function remain unclear. We investigated the extent to which sex differences in intrinsic cortical functional organization may be explained by differences in cortical morphometry, namely brain size, microstructure, and the geodesic distances of connectivity profiles. For this, we computed a low dimensional representation of functional cortical organization, the sensory-association axis, and identified widespread sex differences. Contrary to our expectations, observed sex differences in functional organization were not fundamentally associated with differences in brain size, microstructural organization, or geodesic distances, despite these morphometric properties being per se associated with functional organization and differing between sexes. Instead, functional sex differences in the sensory-association axis were associated with differences in functional connectivity profiles and network topology. Collectively, our findings suggest that sex differences in functional cortical organization extend beyond sex differences in cortical morphometry.

Publication types

  • Preprint