Absence of Spontaneous Magnetic Fields due to Time-Reversal Symmetry Breaking in Bulk Superconducting UTe_{2}

Phys Rev Lett. 2023 Dec 1;131(22):226504. doi: 10.1103/PhysRevLett.131.226504.

Abstract

We have investigated the low-temperature local magnetic properties in the bulk of molten salt-flux (MSF)-grown single crystals of the candidate odd-parity superconductor UTe_{2} by zero-field muon spin relaxation (μSR). In contrast to previous μSR studies of UTe_{2} single crystals grown by a chemical vapor transport method, we find no evidence of magnetic clusters or electronic moments fluctuating slow enough to cause a discernible relaxation of the zero-field μSR asymmetry spectrum. Consequently, our measurements on MSF-grown single crystals rule out the generation of spontaneous magnetic fields in the bulk that would occur near impurities or lattice defects if the superconducting state of UTe_{2} breaks time-reversal symmetry. This result suggests that UTe_{2} is characterized by a single-component superconducting order parameter.