Effect of Substrates on the Physicochemical Properties of Li7La3Zr2O12 Films Obtained by Electrophoretic Deposition

Micromachines (Basel). 2023 Nov 25;14(12):2153. doi: 10.3390/mi14122153.

Abstract

Thin film technology of lithium-ion solid electrolytes should be developed for the creation of all-solid-state power sources. Solid electrolytes of the Li7La3Zr2O12 (LLZ) family are one of the promising membranes for all-solid-state batteries. LLZ films were obtained by electrophoretic deposition on Ti, Ni and steel substrates. The influence of different metal substrates on microstructure, phase composition and conductivity of the LLZ films after their heat treatment was studied. It was shown that the annealing of dried LLZ films in an Ar atmosphere leads to the transition from tetragonal modification to a low-temperature cubic structure. It was established that an impurity phase (Li2CO3) was not observed for LLZ films deposited on Ti foil after heat treatment, in contrast to films deposited on Ni and steel substrates. The highest lithium-ion conductivity values were achieved for the LLZ films annealed at 300 °C, 1.1 × 10-8 S cm-1 (at 100 °C) and 1.0 × 10-6 S cm-1 (at 200 °C).

Keywords: Li7La3Zr2O12; electrophoretic deposition; films; lithium-ion conductivity.