Room-Temperature Fiber-Coupled Single-Photon Sources based on Colloidal Quantum Dots and SiV Centers in Back-Excited Nanoantennas

Nano Lett. 2024 Jan 17;24(2):640-648. doi: 10.1021/acs.nanolett.3c03672. Epub 2024 Jan 2.

Abstract

We demonstrate an important step toward on-chip integration of single-photon sources at room temperature. Excellent photon directionality is achieved with a hybrid metal-dielectric bullseye antenna, while back-excitation is permitted by placement of the emitter in a subwavelength hole positioned at its center. The unique design enables a direct back-excitation and very efficient front coupling of emission either to a low numerical aperture (NA) optics or directly to an optical fiber. To show the versatility of the concept, we fabricate devices containing either a colloidal quantum dot or a nanodiamond containing silicon-vacancy centers, which are accurately positioned using two different nanopositioning methods. Both of these back-excited devices display front collection efficiencies of ∼70% at NAs as low as 0.5. The combination of back-excitation with forward directionality enables direct coupling of the emitted photons into a proximal optical fiber without any coupling optics, thereby facilitating and simplifying future integration.

Keywords: SiV-centers; colloidal quantum dot; fiber-coupled single photons; hybrid metal−dielectric bullseye antenna; integrated single-photon source; quantum cryptography; quantum key distribution.