Functional neuronal circuits emerge in the absence of developmental activity

Nat Commun. 2024 Jan 8;15(1):364. doi: 10.1038/s41467-023-44681-2.

Abstract

The complex neuronal circuitry of the brain develops from limited information contained in the genome. After the genetic code instructs the birth of neurons, the emergence of brain regions, and the formation of axon tracts, it is believed that temporally structured spiking activity shapes circuits for behavior. Here, we challenge the learning-dominated assumption that spiking activity is required for circuit formation by quantifying its contribution to the development of visually-guided swimming in the larval zebrafish. We found that visual experience had no effect on the emergence of the optomotor response (OMR) in dark-reared zebrafish. We then raised animals while pharmacologically silencing action potentials with the sodium channel blocker tricaine. After washout of the anesthetic, fish could swim and performed with 75-90% accuracy in the OMR paradigm. Brain-wide imaging confirmed that neuronal circuits came 'online' fully tuned, without requiring activity-dependent plasticity. Thus, complex sensory-guided behaviors can emerge through activity-independent developmental mechanisms.

MeSH terms

  • Action Potentials
  • Animals
  • Axons
  • Brain
  • Neurons*
  • Zebrafish*