Molecular characterization of carbapenemase-producing Enterobacterales in a tertiary hospital in Lima, Peru

Microbiol Spectr. 2024 Feb 6;12(2):e0250323. doi: 10.1128/spectrum.02503-23. Epub 2024 Jan 9.

Abstract

Carbapenemase-producing Enterobacterales (CPE) are a growing threat to global health and the economy. Understanding the interactions between resistance and virulence mechanisms of CPE is crucial for managing difficult-to-treat infections and informing outbreak prevention and control programs. Here, we report the characterization of 21 consecutive, unique clinical isolates of CPE collected in 2018 at a tertiary hospital in Lima, Peru. Isolates were characterized by phenotypic antimicrobial susceptibility testing and whole-genome sequencing to identify resistance determinants and virulence factors. Seven Klebsiella pneumoniae isolates were classified as extensively drug-resistant. The remaining Klebsiella, Enterobacter hormaechei, and Escherichia coli isolates were multidrug-resistant. Eighteen strains carried the metallo-β-lactamase NDM-1, two the serine-carbapenemase KPC-2, and one isolate had both carbapenemases. The blaNDM-1 gene was located in the truncated ΔISAba125 element, and the blaKPC-2 gene was in the Tn4401a transposon. ST147 was the most frequent sequence type among K. pneumoniae isolates. Our findings highlight the urgent need to address the emergence of CPE and strengthen control measures and antibiotic stewardship programs in low- and middle-income settings.IMPORTANCEGenomic surveillance of antimicrobial resistance contributes to monitoring the spread of resistance and informs treatment and prevention strategies. We characterized 21 carbapenemase-producing Enterobacterales collected at a Peruvian tertiary hospital in 2018, which exhibited very high levels of resistance and carried numerous resistance genes. We detected the coexistence of carbapenemase-encoding genes (blaNDM-1 and blaKPC-2) in a Klebsiella pneumoniae isolate that also had the PmrB(R256G) mutation associated with colistin resistance. The blaKPC-2 genes were located in Tn4401a transposons, while the blaNDM-1 genes were in the genetic structure Tn125 (ΔISAba125). The presence of high-risk clones among Klebsiella pneumoniae (ST11 and ST147) and Escherichia coli (ST410) isolates is also reported. The study reveals the emergence of highly resistant bacteria in a Peruvian hospital, which could compromise the effectiveness of current treatments and control.

Keywords: Peru; Whole-genome sequencing; carbapenem-producing Enterobacterales; carbapenems; drug resistance.

MeSH terms

  • Anti-Bacterial Agents
  • Anti-Infective Agents*
  • Bacterial Proteins* / genetics
  • Escherichia coli / genetics
  • Klebsiella pneumoniae / genetics
  • Microbial Sensitivity Tests
  • Peru
  • Tertiary Care Centers
  • beta-Lactamases / genetics

Substances

  • carbapenemase
  • Bacterial Proteins
  • beta-Lactamases
  • Anti-Infective Agents
  • Anti-Bacterial Agents