Urinary Androgens Provide Additional Evidence Related to Metabolism and Are Correlated With Serum Androgens in Girls

J Endocr Soc. 2024 Jan 16;8(3):bvad161. doi: 10.1210/jendso/bvad161.

Abstract

Context: Androgen levels are generally measured in serum samples, but urine may be a more feasible option, especially in children, as it is a noninvasive alternative.

Objective: To assess the correlations of 10 urinary androgen metabolites with 4 serum androgens [dehydroepiandrosterone-sulfate (DHEA-S), androstenedione, and total and free testosterone] and assess if their correlations differ by participant characteristics.

Methods: Our study consisted of 44 girls, ages 6-13, who participated in the New York site of the LEGACY Girls Study and had both serum and urine samples collected at the same visit. We performed Pearson's correlation coefficient tests between 4 serum and 10 individual urinary metabolite measures and their sum. We examined the influence of participant characteristics on the magnitude and direction of the correlations.

Results: The summed urinary metabolite measures had the highest correlation with free testosterone in serum (global sum, r = 0.83) and correlated least with DHEA-S in serum (global sum, r = 0.64). The correlation between individual urinary metabolites and serum androgens ranged from 0.08 to 0.84.Two 11-oxygenated urinary metabolites (5α-androstane-3α-ol-11,17-dione5β-androstane-3α,11β-diol-17-one) were weakly correlated with all serum androgens. Participant age, weight, height, waist:hip ratio, and pubic hair growth stage changed the correlations between urinary and serum androgens measures between 10% and 213%.

Conclusion: The sum of urinary androgen metabolites was a good marker of circulating androstenedione, testosterone, and free testosterone. Individual urinary metabolites provide additional information about the metabolic processes of disease development compared to the antecedent serum androgens.

Keywords: adolescents; androgens; metabolites; puberty; serum; urine.