Impact of sunitinib resistance on clear cell renal cell carcinoma therapeutic sensitivity in vitro

Cell Cycle. 2024 Jan;23(1):43-55. doi: 10.1080/15384101.2024.2306760. Epub 2024 Jan 23.

Abstract

Sunitinib resistance creates a major clinical challenge for the treatment of advanced clear cell renal cell carcinoma (ccRCC) and functional and metabolic changes linked to sunitinib resistance are not fully understood. We sought to characterize the molecular and metabolic changes induced by the development of sunitinib resistance in ccRCC by developing and characterizing two human ccRCC cell lines resistant to sunitinib. Consistent with the literature, sunitinib-resistant ccRCC cell lines presented an aberrant overexpression of Axl and PD-L1, as well as a metabolic rewiring characterized by enhanced OXPHOS and glutamine metabolism. Therapeutic challenges of sunitinib-resistant ccRCC cell lines in vitro using small molecule inhibitors targeting Axl, AMPK and p38, as well as using PD-L1 blocking therapeutic antibodies, showed limited CTL-mediated cytotoxicity in a co-culture model. However, the AMPK activator metformin appears to sensitize the effect of PD-L1 blocking therapeutic antibodies and to enhance CTLs' cytotoxic effects on ccRCC cells. These effects were not broadly observed with the Axl and the p38 inhibitors. Taken together, these data suggest that targeting certain pathways aberrantly activated by sunitinib resistance such as the AMPK/PDL1 axis might sensitize ccRCC to immunotherapies as a second-line therapeutic approach.

Keywords: Axl; OXPHOS; PD-L1; RCC; Sunitinib; metformin.

MeSH terms

  • AMP-Activated Protein Kinases
  • B7-H1 Antigen
  • Carcinoma, Renal Cell* / pathology
  • Cell Line, Tumor
  • Drug Resistance, Neoplasm
  • Humans
  • Kidney Neoplasms* / pathology
  • Sunitinib / pharmacology
  • Sunitinib / therapeutic use

Substances

  • Sunitinib
  • B7-H1 Antigen
  • AMP-Activated Protein Kinases

Grants and funding

The author(s) reported there is no funding associated with the work featured in this article.