Interaction-Induced ac Stark Shift of Exciton-Polaron Resonances

Phys Rev Lett. 2024 Feb 2;132(5):056901. doi: 10.1103/PhysRevLett.132.056901.

Abstract

Laser-induced shift of atomic states due to the ac Stark effect has played a central role in cold-atom physics and facilitated their emergence as analog quantum simulators. Here, we explore this phenomenon in an atomically thin layer of semiconductor MoSe_{2}, which we embedded in a heterostructure enabling charge tunability. Shining an intense pump laser with a small detuning from the material resonances, we generate a large population of virtual collective excitations and achieve a regime where interactions with this background population are the leading contribution to the ac Stark shift. Using this technique we study how itinerant charges modify-and dramatically enhance-the interactions between optical excitations. In particular, our experiments show that the interaction between attractive polarons could be more than an order of magnitude stronger than those between bare excitons.