Long-Range Structural Order in a Hidden Phase of Ruddlesden-Popper Bilayer Nickelate La3Ni2O7

Inorg Chem. 2024 Mar 18;63(11):5020-5026. doi: 10.1021/acs.inorgchem.3c04474. Epub 2024 Mar 5.

Abstract

The recent discovery of superconductivity in the Ruddlesden-Popper bilayer nickelate, specifically La3Ni2O7, has generated significant interest in the exploration of high-temperature superconductivity within this material family. In this study, we present the crystallographic and electrical resistivity properties of two distinct Ruddlesden-Popper nickelates: the bilayer La3Ni2O7 (referred to as 2222-phase) and a previously uncharacterized phase, La3Ni2O7 (1313-phase). The 2222-phase is characterized by a pseudo F-centered orthorhombic lattice, featuring bilayer perovskite [LaNiO3] layers interspaced by rock salt [LaO] layers, forming a repeated ...2222... sequence. Intriguingly, the 1313-phase, which displays semiconducting properties, crystallizes in the Cmmm space group and exhibits a pronounced predilection for a C-centered orthorhombic lattice. Within this structure, the perovskite [LaNiO3] layers exhibit a distinctive long-range ordered arrangement, alternating between single- and trilayer configurations, resulting in a ...1313... sequence. This report contributes to novel insights into the crystallography and the structure-property relationship of Ruddlesden-Popper nickelates, paving the way for further investigations into their unique physical properties.