Associations of a plant-centered diet and lung function across early to mid-adulthood: The CARDIA Lung Study

Respir Res. 2024 Mar 11;25(1):122. doi: 10.1186/s12931-023-02632-x.

Abstract

Background: Lung function throughout adulthood predicts morbidity and mortality even among adults without chronic respiratory disease. Diet quality may represent a modifiable risk factor for lung function impairment later in life. We investigated associations between nutritionally-rich plant-centered diet and lung function across early and middle adulthood from the Coronary Artery Risk Development in Young Adults (CARDIA) Study.

Methods: Diet was assessed at baseline and years 7 and 20 of follow-up using the validated CARDIA diet history questionnaire. Plant-centered diet quality was scored using the validated A Priori Diet Quality Score (APDQS), which weights food groups to measure adherence to a nutritionally-rich plant-centered diet for 20 beneficially rated foods and 13 adversely rated foods. Scores were cumulatively averaged over follow-up and categorized into quintiles. The primary outcome was lung function decline, including forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC), measured at years 0, 2, 5, 10, 20, and 30. We estimated the association of APDQS with annual pulmonary function changes and cross-sectional differences in a repeated measures regression model, adjusting for clinically relevant covariates.

Results: The study included 3,787 Black and White men and women aged 18-30 in 1985-86 and followed for 30 years. In multivariable repeated measures regression models, individuals in the lowest APDQS quintile (poorest diet) had declines in FEV1 that were 1.6 ml/year greater than individuals in the highest quintile (35.0 vs. 33.4 ml/year, ß ± SE per 1 SD change APDQS 0.94 ± 0.36, p = 0.009). Additionally, declines in FVC were 2.4 ml/year greater in the lowest APDQS quintile than those in the highest quintile (37.0 vs 34.6 ml/year, ß ± SE per 1 SD change APDQS 1.71 ± 0.46, p < 0.001). The association was not different between never and ever smokers (pint = 0.07 for FVC and 0.32 for FEV1). In sensitivity analyses where current asthma diagnosis and cardiorespiratory fitness were further adjusted, results remained similar. Cross-sectional analysis at each exam year also showed significant differences in lung function according to diet after covariate adjustment.

Conclusions: In this 30-year longitudinal cohort study, long-term adherence to a nutritionally-rich plant-centered diet was associated with cross-sectional differences in lung function as well as slower decline in lung function, highlighting diet quality as a potential treatable trait supporting long-term lung health.

Keywords: Diet; Epidemiological study; Longitudinal changes in lung function; Lung function; Lung function in epidemiology; Respiratory epidemiology.

MeSH terms

  • Adult
  • Coronary Vessels*
  • Cross-Sectional Studies
  • Diet
  • Female
  • Forced Expiratory Volume
  • Humans
  • Longitudinal Studies
  • Lung*
  • Male
  • Vital Capacity
  • Young Adult