Poroelastic Characterization and Modeling of Subcutaneous Tissue Under Confined Compression

Ann Biomed Eng. 2024 Jun;52(6):1638-1652. doi: 10.1007/s10439-024-03477-1. Epub 2024 Mar 12.

Abstract

Subcutaneous tissue mechanics are important for drug delivery. Yet, even though this material is poroelastic, its mechanical characterization has focused on its hyperelastic response. Moreover, advancement in subcutaneous drug delivery requires effective tissue mimics such as hydrogels for which similar gaps of poroelastic data exist. Porcine subcutaneous samples and gelatin hydrogels were tested under confined compression at physiological conditions and strain rates of 0.01%/s in 5% strain steps with 2600 s of stress relaxation between loading steps. Force-time data were used in an inverse finite element approach to obtain material parameters. Tissues and gels were modeled as porous neo-Hookean materials with properties specified via shear modulus, effective solid volume fraction, initial hydraulic permeability, permeability exponent, and normalized viscous relaxation moduli. The constitutive model was implemented into an isogeometric analysis (IGA) framework to study subcutaneous injection. Subcutaneous tissue exhibited an initial spike in stress due to compression of the solid and fluid pressure buildup, with rapid relaxation explained by fluid drainage, and longer time-scale relaxation explained by viscous dissipation. The inferred parameters aligned with the ranges reported in the literature. Hydraulic permeability, the most important parameter for drug delivery, was in the range k 0 [ 0.142 , 0.203 ] mm 4 /(N s). With these parameters, IGA simulations showed peak stresses due to a 1-mL injection to reach 48.8 kPa at the site of injection, decaying after drug volume disperses into the tissue. The poro-hyper-viscoelastic neo-Hookean model captures the confined compression response of subcutaneous tissue and gelatin hydrogels. IGA implementation enables predictive simulations of drug delivery.

Keywords: Confined compression; Isogeometric analysis; Nonlinear finite elements; Poroelasticity; Subcutaneous tissue.

MeSH terms

  • Animals
  • Compressive Strength
  • Elasticity
  • Finite Element Analysis
  • Gelatin / chemistry
  • Hydrogels* / chemistry
  • Models, Biological*
  • Porosity
  • Stress, Mechanical
  • Subcutaneous Tissue*
  • Swine

Substances

  • Hydrogels
  • Gelatin