Mask-Pyramid Network: A Novel Panoptic Segmentation Method

Sensors (Basel). 2024 Feb 22;24(5):1411. doi: 10.3390/s24051411.

Abstract

In this paper, we introduce a novel panoptic segmentation method called the Mask-Pyramid Network. Existing Mask RCNN-based methods first generate a large number of box proposals and then filter them at each feature level, which requires a lot of computational resources, while most of the box proposals are suppressed and discarded in the Non-Maximum Suppression process. Additionally, for panoptic segmentation, it is a problem to properly fuse the semantic segmentation results with the Mask RCNN-produced instance segmentation results. To address these issues, we propose a new mask pyramid mechanism to distinguish objects and generate much fewer proposals by referring to existing segmented masks, so as to reduce computing resource consumption. The Mask-Pyramid Network generates object proposals and predicts masks from larger to smaller sizes. It records the pixel area occupied by the larger object masks, and then only generates proposals on the unoccupied areas. Each object mask is represented as a H × W × 1 logit, which fits well in format with the semantic segmentation logits. By applying SoftMax to the concatenated semantic and instance segmentation logits, it is easy and natural to fuse both segmentation results. We empirically demonstrate that the proposed Mask-Pyramid Network achieves comparable accuracy performance on the Cityscapes and COCO datasets. Furthermore, we demonstrate the computational efficiency of the proposed method and obtain competitive results.

Keywords: convolutional neural network; image processing; panoptic segmentation.

Grants and funding

This research received no external funding.