Unveiling the structural and bonding properties of AuSi2- and AuSi3- clusters: A comprehensive analysis of anion photoelectron spectroscopy and ab initio calculations

J Chem Phys. 2024 Mar 21;160(11):114304. doi: 10.1063/5.0198171.

Abstract

Silicon clusters infused with transition metals, notably gold, exhibit distinct characteristics crucial for advancing microelectronics, catalysts, and energy storage technologies. This investigation delves into the structural and bonding attributes of gold-infused silicon clusters, specifically AuSi2- and AuSi3-. Utilizing anion photoelectron spectroscopy and ab initio computations, we explored the most stable isomers of these clusters. The analysis incorporated Natural Population Analysis, electron localization function, molecular orbital diagrams, adaptive natural density partitioning, and Wiberg bond index for a comprehensive bond assessment. Our discoveries reveal that cyclic configurations with the Au atom atop the Si-Si linkage within the fundamental Si2 and Si3 clusters offer the most energetically favorable structures for AuSi2- and AuSi3- anions, alongside their neutral counterparts. These anions exhibit notable highest occupied molecular orbital-lowest unoccupied molecular orbital gaps and significant σ and π bonding patterns, contributing to their chemical stability. Furthermore, AuSi2- demonstrates π aromaticity, while AuSi3- showcases a distinctive blend of σ antiaromaticity and π aromaticity, crucial for their structural robustness. These revelations expand our comprehension of gold-infused silicon clusters, laying a theoretical groundwork for their potential applications in high-performance solar cells and advanced functional materials.