Purkinje cell dysfunction causes disrupted sleep in ataxic mice

Dis Model Mech. 2024 Apr 2:dmm.050379. doi: 10.1242/dmm.050379. Online ahead of print.

Abstract

Purkinje cell dysfunction disrupts movement and causes disorders such as ataxia. Recent evidence suggests that Purkinje cell dysfunction may also alter sleep regulation. Here, we used an ataxic mouse model generated by silencing Purkinje cell neurotransmission (L7Cre;Vgatfx/fx) to better understand how cerebellar dysfunction impacts sleep physiology. We focused our analysis on sleep architecture and electrocorticography (ECoG) patterns based on their relevance to extracting physiological measurements during sleep. We found that circadian activity is unaltered in the mutant mice, although their sleep parameters and ECoG patterns are modified. The L7Cre;Vgatfx/fx mutant mice have decreased wakefulness and rapid eye movement (REM) sleep, while non-rapid eye movement (NREM) sleep is increased. The mutants have an extended latency to REM sleep, which is also observed in human ataxia patients. Spectral analysis of ECoG signals revealed alterations in the power distribution across different frequency bands defining sleep. Therefore, Purkinje cell dysfunction may influence wakefulness and equilibrium of distinct sleep stages in ataxia. Our findings posit a connection between cerebellar dysfunction and disrupted sleep and underscore the importance of examining cerebellar circuit function in sleep disorders.

Keywords: Ataxia; Cerebellar nuclei; Circadian rhythms; Purkinje cells; Sleep.