Colocalization analysis of 3' UTR alternative polyadenylation quantitative trait loci reveals novel mechanisms underlying associations with lung function

Hum Mol Genet. 2024 Apr 3:ddae055. doi: 10.1093/hmg/ddae055. Online ahead of print.

Abstract

While many disease-associated single nucleotide polymorphisms (SNPs) are expression quantitative trait loci (eQTLs), a large proportion of genome-wide association study (GWAS) variants are of unknown function. Alternative polyadenylation (APA) plays an important role in posttranscriptional regulation by allowing genes to shorten or extend 3' untranslated regions (UTRs). We hypothesized that genetic variants that affect APA in lung tissue may lend insight into the function of respiratory associated GWAS loci. We generated alternative polyadenylation (apa) QTLs using RNA sequencing and whole genome sequencing on 1241 subjects from the Lung Tissue Research Consortium (LTRC) as part of the NHLBI TOPMed project. We identified 56 179 APA sites corresponding to 13 582 unique genes after filtering out APA sites with low usage. We found that a total of 8831 APA sites were associated with at least one SNP with q-value < 0.05. The genomic distribution of lead APA SNPs indicated that the majority are intronic variants (33%), followed by downstream gene variants (26%), 3' UTR variants (17%), and upstream gene variants (within 1 kb region upstream of transcriptional start site, 10%). APA sites in 193 genes colocalized with GWAS data for at least one phenotype. Genes containing the top APA sites associated with GWAS variants include membrane associated ring-CH-type finger 2 (MARCHF2), nectin cell adhesion molecule 2 (NECTIN2), and butyrophilin subfamily 3 member A2 (BTN3A2). Overall, these findings suggest that APA may be an important mechanism for genetic variants in lung function and chronic obstructive pulmonary disease (COPD).

Keywords: 3′ UTR length QTL; GWAS; alternative polyadenylation; colocalization.