A low-cost phantom design for evaluating spine SABR calculations in the presence of prosthetic vertebral stabilization

Phys Eng Sci Med. 2024 Apr 4. doi: 10.1007/s13246-024-01412-1. Online ahead of print.

Abstract

Dose-perturbation characteristics are important to consider during the calculation of radiation therapy protocols for patients who are going to receive high doses that would reach the tolerance limits of the spinal cord [1]. Several studies have investigated dose perturbations introduced by metal implants in close proximity to spine SABR treatments [2-7]. However, there is a lack of work assessing this effect using the RayStation TPS [8]. We present an initial design for a low-cost phantom to evaluate spine stereotactic ablative radiotherapy (SABR) in the presence of prosthetic vertebral stabilization. The phantom is modular, allowing the prosthetic at the centre of the phantom to be removed by exchanging the central block. It also includes space to insert ion chamber and film. The agreement of the RayStation TPS (v8.0B) collapsed cone convolution (CCC) calculation and measurement was determined for phantom versions with and without prosthetic. There was little to no change in the agreement between the measured and calculated dose when introducing metallic hardware. This suggests that our Raystation-based SABR planning approach for patients with spinal hardware meets clinical expectations. Departments without access to anthropomorphic phantoms may find this design useful but should test their phantom design in typical clinical settings to ensure it is robust to real world situations.

Keywords: CCC; Metal; Phantom; RayStation; SABR; Stereotactic ablative radiotherapy.