Laser power and high-temperature dependent Raman studies of layered bismuth and copper-based oxytellurides for optoelectronic applications

Phys Chem Chem Phys. 2024 Apr 17;26(15):12231-12245. doi: 10.1039/d4cp00562g.

Abstract

Layered metal oxychalcogenide materials have gained significant attention in recent years due to their numerous applications in various emerging fields. The bismuth (Bi) based ternary and quaternary oxychalcogenide materials have become popular due to their excellent potential in optoelectronic, thermoelectric, and semiconducting applications. Adding copper (Cu) to these building matrices has enhanced their usefulness in various ways. In this work, Bi and Cu-based ternary and quaternary layered oxytellurides are synthesized using a unique, rarely used "microwave (MW) assisted method," and their temperature and laser power-dependent Raman measurements are carried out. All the samples are prepared at the same MW power and at a fixed irradiation time. Crystallographic studies show that the good crystallinity of the synthesized materials matches well with the phases reported previously. Nanosheet-like morphology was observed for all the prepared samples. The optical properties and band gap energies of these materials were obtained using the diffuse reflectance spectroscopy technique, which are in the range of 1.15-2.52 eV. The photoluminescence spectrum shows broad peaks around orange-red regions, indicating the potential applicability of these materials in various optoelectronic applications. The effect of high temperature and laser power on the Raman spectra of the oxytellurides is demonstrated, where the appearance of different vibrational modes along with a redshift in peak positions with the increase in temperature and power is observed.