Performance benchmarks for open source porous electrode theory models

Heliyon. 2024 Mar 20;10(7):e27830. doi: 10.1016/j.heliyon.2024.e27830. eCollection 2024 Apr 15.

Abstract

The electrochemical response characteristics of existing and emerging porous electrode theory (PET) models was benchmarked to establish a common basis to assess their physical reaches, limitations, and accuracy. Three open source PET models: dualfoil, MPET, and LIONSIMBA were compared to simulate the discharge of a LiMn2O4-graphite cell against experimental data. For C-rates below 2C, the simulated discharge voltage curves matched the experimental data within 4% deviation for dualfoil, MPET, and LIONSIMBA, while for C-rates above 3C, dualfoil and MPET show smaller deviations, within 5%, against experiments. The electrochemical profiles of all three codes exhibit significant qualitative differences, despite showing the same macroscopic voltage response, leading the user to different conclusions regarding the battery performance and possible degradation mechanisms of the analyzed system.