Genomic Landscape of Circulating Tumor DNA in Patients With Hormone Receptor-Positive/Human Epidermal Growth Factor Receptor-2-Negative Metastatic Breast Cancer Treated With Abemaciclib: Data From the SCRUM-Japan Cancer Genome Screening Project

JCO Precis Oncol. 2024 Apr:8:e2300647. doi: 10.1200/PO.23.00647.

Abstract

Purpose: To understand the mutational landscape of circulating tumor DNA (ctDNA) and tumor tissue of patients with hormone receptor-positive (HR+), human epidermal growth factor receptor-2-negative (HER2-) metastatic breast cancer (MBC) treated with abemaciclib + endocrine therapy (ET).

Methods: Blood samples for ctDNA and/or tissue samples were collected from abemaciclib-treated patients with HR+/HER2- MBC enrolled in the SCRUM-Japan MONSTAR-SCREEN project. Blood samples were collected before abemaciclib initiation (baseline) and at disease progression/abemaciclib discontinuation (post abemaciclib treatment). Clinical and genomic characteristics including neoplastic burden (measured by shedding rate and maximum variant allele frequency [VAF]) were assessed at baseline. Genomic alterations in ctDNA were compared in paired baseline and post abemaciclib treatment samples.

Results: All patients (N = 97) were female (median age, 57 years [IQR, 50-67]). In baseline ctDNA (n = 77), PIK3CA (37%), TP53 (28%), ESR1 (16%), and GATA3 (11%) were the most frequently mutated genes. Baseline tissue samples (n = 79) showed similar alteration frequencies. Among patients with baseline ctDNA data, 30% had received previous ET. ESR1 alteration frequency (35% v 8%; P < .01), median shedding rate (3 v 2), and maximum somatic VAF (4 v 0.8; both P < .05) were significantly higher in ctDNA from patients with previous ET than those without previous ET. In paired ctDNA samples (n = 33), PIK3CA and ESR1 alteration frequencies were higher after abemaciclib treatment than at baseline, though not statistically significant. Among the post-treatment alterations, those newly acquired were detected most frequently in FGF3/4/19 (18%); PIK3CA, TP53, CCND1, and RB1 (all 15%); and ESR1 (12%).

Conclusion: We summarized the ctDNA and cancer tissue mutational landscape, including overall neoplastic burden and PIK3CA and ESR1 hotspot mutations in abemaciclib-treated patients with HR+/HER2- MBC. The data provide insights that could help optimize treatment strategies in this population.

MeSH terms

  • Aged
  • Aminopyridines*
  • Benzimidazoles*
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / genetics
  • Breast Neoplasms* / pathology
  • Circulating Tumor DNA* / genetics
  • Class I Phosphatidylinositol 3-Kinases / genetics
  • Early Detection of Cancer
  • ErbB Receptors
  • Female
  • Genomics
  • Humans
  • Japan
  • Male
  • Middle Aged

Substances

  • abemaciclib
  • Aminopyridines
  • Benzimidazoles
  • Circulating Tumor DNA
  • Class I Phosphatidylinositol 3-Kinases
  • ErbB Receptors