Optimal Inhalation Profile of Pressurized Metered Dry Powder Inhaler Using a Valved Holding Chamber: A Dynamic Analysis

J Aerosol Med Pulm Drug Deliv. 2024 Apr 22. doi: 10.1089/jamp.2023.0019. Online ahead of print.

Abstract

Background: The combined use of a pressurized metered-dose inhaler and valved holding chamber (pMDI+VHC) is recommended to improve efficiency and safety; however, aerosol release is likely to vary with the inhalation maneuver. This in vitro study investigated the aerodynamic characteristics and aerosol release features of pMDI+VHC (Aerochamber, Trudell Medical International). Methods: The static and dynamic changes in the airway resistance (Raw) during inhalation (withdrawal) through pMDI+VHC were measured. Subsequently, the aerosol released from pMDI+VHC was measured using simplified laser photometry during withdrawal with either fast ramp-up then steady or slow ramp-up followed by gradual decrement at different intensities and times to peak flow (TPWF). Results: Raw increased linearly with changes in the withdrawal flow (WF) rate between 10 and 50 L/min. The slope was steep in the low WF range (<50 L/min) and became milder in the higher range. The aerosol mass tended to increase with an increase in the peak WF (PWF) of slow ramp-up profile. When three different WF increment slopes (TPWF: 0.4, 1.4, and 2.4 seconds) were compared, the released aerosol mass tended to decrease, and the aerosol release time was prolonged at longer TPWF. When the PWF was increased, the aerosol release time became shorter, and the withdrawn volume required for 95% aerosol release became larger; however, it did not exceed 0.4 L at suitable TPWF (0.4 seconds). Conclusion: Raw analysis suggests that inhalation at 30-50 L/min is suitable for pMDI+VHC in this setting. Rapid (TPWF, 0.4 seconds) inhalation, but not necessarily long (maximum 2.0 seconds) and deep (but larger than 0.55 L), is also recommended. Practically, direct inhalation to be weaker than usual breathing, as fast as possible, and far less than 2.0 seconds.

Keywords: human inhalation flow; laser photometry; pressurized metered dose inhaler; valved holding chamber.