Measurement setup for Nernst and Seebeck effect at high temperatures and magnetic fields tested on elemental bismuth and full-Heusler compounds

Rev Sci Instrum. 2024 Apr 1;95(4):043906. doi: 10.1063/5.0195486.

Abstract

In this work, a measurement setup to study the Seebeck and Nernst effect at high temperatures and high magnetic fields is introduced and discussed. The measurement system allows for simultaneous measurements of both thermoelectric effects up to 700 K and magnetic fields up to 12 T. Based on theoretical concepts, measurement equations are derived that counteract constant spurious offset voltages and, therefore, inhibit systematic errors in the measurement setup. The functionality is demonstrated on polycrystalline samples of elemental bismuth as well as various full-Heusler materials, exhibiting an anomalous Nernst effect. In all samples, the measured Seebeck and Nernst coefficients align excellently with the reported values. This allows future research to substantially extend the measured temperature and field intervals, commonly limited to temperatures below room temperature. For the first time, the thermoelectric and thermomagnetic properties of these materials are reported up to temperatures of 560 K.