Red Fluorescent Molecule with Aggregation-Induced Emission Based on Dehydroabietic Acid Diarylamine for Bioimaging

J Fluoresc. 2024 Apr 23. doi: 10.1007/s10895-024-03712-x. Online ahead of print.

Abstract

In this paper, molecules with AIE red light properties were designed by coupling dehydroabietic acid diarylamine and 2,3-diphenylfumaronitrile, which were designated 2DTPA-CN and 2TPA-CN. The emission wavelengths were 683 nm and 701 nm, respectively. The 2DTPA-CN and 2TPA-CN showed typical AIE characteristics with large Stokes shifts of 7.4 × 104 cm-1 and 6.7 × 104 cm-1, respectively. The obvious solvatochromism and electron cloud distributions of HOMO/LUMO in the ground and excited states both reveal the intramolecular charge transfer (ICT) effect. The 2DTPA-CN, boasting exceptional biocompatibility, was successfully prepared into nanoparticles (NPs), which were applied to tumor cell imaging, showing good bioimaging effects both in vitro imaging in live cells and in vivo imaging in live mice. The results demonstrated that it possesses significant potential as an effective bioimaging reagent for the detection of tumor cells. Furthermore, the incorporation of 2,3-diphenylfumaronitrile moieties to dehydroabietic acid diarylamine emerged as a proficient approach to broaden the emission wavelengths of rosin-based fluorescent materials.

Keywords: Bioimaging in vitro and in vivo; Dehydroabietic acid diarylamine; Red aggregation-induced emission; Rosin.