Kirigami-inspired artificial spidroin microneedles for wound patches

Int J Biol Macromol. 2024 Apr 23;268(Pt 1):131838. doi: 10.1016/j.ijbiomac.2024.131838. Online ahead of print.

Abstract

Intelligent wound management has important potential for promoting the recovery of chronic wounds caused by diabetes. Here, inspired by the field of kirigami, smart patterned high-stretch microneedle dressings (KPMDs) based on gene-modified spider silk proteins were developed to achieve sensitive biochemical and physiological sensing. The spider silk protein (spidroin) has excellent tensile properties, ductility, toughness and biocompatibility. Notably, the kirigami method-prepared kirigami structure of the spidroin MN dressing had a high tensile strength , while its ductility reached approximately 800 %. Moreover, the unique optical properties of photonic crystals allow for fluorescence enhancement, providing KPMD with color-sensitive properties suitable for wound management and clinical guidance. Furthermore, to improve the sensitivity of KPMD-s to motion monitoring, a microelectronic matrix was integrated on its surface. These distinct material properties suggest that this research lays the foundation for a new generation of high-performance biomimetic diatomaceous earth materials for application.

Keywords: Kirigami-inspired; Microneedles; Spidroin.