NETosis Drives Blood Pressure Elevation and Vascular Dysfunction in Hypertension

Circ Res. 2024 May 24;134(11):1483-1494. doi: 10.1161/CIRCRESAHA.123.323897. Epub 2024 Apr 26.

Abstract

Background: Neutrophil extracellular traps (NETs) are composed of DNA, enzymes, and citrullinated histones that are expelled by neutrophils in the process of NETosis. NETs accumulate in the aorta and kidneys in hypertension. PAD4 (protein-arginine deiminase-4) is a calcium-dependent enzyme that is essential for NETosis. TRPV4 (transient receptor potential cation channel subfamily V member 4) is a mechanosensitive calcium channel expressed in neutrophils. Thus, we hypothesize that NETosis contributes to hypertension via NET-mediated endothelial cell (EC) dysfunction.

Methods: NETosis-deficient Padi4-/- mice were treated with Ang II (angiotensin II). Blood pressure was measured by radiotelemetry, and vascular reactivity was measured with wire myography. Neutrophils were cultured with or without ECs and exposed to normotensive or hypertensive uniaxial stretch. NETosis was measured by flow cytometry. ECs were treated with citrullinated histone H3, and gene expression was measured by quantitative reverse transcription PCR. Aortic rings were incubated with citrullinated histone H3, and wire myography was performed to evaluate EC function. Neutrophils were treated with the TRPV4 agonist GSK1016790A. Calcium influx was measured using Fluo-4 dye, and NETosis was measured by immunofluorescence.

Results: Padi4-/- mice exhibited attenuated hypertension, reduced aortic inflammation, and improved EC-dependent vascular relaxation in response to Ang II. Coculture of neutrophils with ECs and exposure to hypertensive uniaxial stretch increased NETosis and accumulation of neutrophil citrullinated histone H3. Histone H3 and citrullinated histone H3 exposure attenuates EC-dependent vascular relaxation. Treatment of neutrophils with the TRPV4 agonist GSK1016790A increases intracellular calcium and NETosis.

Conclusions: These observations identify a role of NETosis in the pathogenesis of hypertension. Moreover, they define an important role of EC stretch and TRPV4 as initiators of NETosis. Finally, they define a role of citrullinated histones as drivers of EC dysfunction in hypertension.

Keywords: extracellular traps; histones; hypertension; neutrophils; protein-arginine deiminase type 4.

MeSH terms

  • Angiotensin II / pharmacology
  • Animals
  • Blood Pressure
  • Cells, Cultured
  • Endothelial Cells / metabolism
  • Extracellular Traps* / metabolism
  • Histones / metabolism
  • Humans
  • Hypertension* / metabolism
  • Hypertension* / physiopathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout*
  • Neutrophils / metabolism
  • Protein-Arginine Deiminase Type 4* / metabolism
  • TRPV Cation Channels* / genetics
  • TRPV Cation Channels* / metabolism

Substances

  • TRPV Cation Channels
  • Trpv4 protein, mouse
  • Protein-Arginine Deiminase Type 4
  • peptidylarginine deiminase 4, mouse
  • Angiotensin II
  • Histones