A Novel Method for Fabricating the Undulating Structures at Dermal-Epidermal Junction by Composite Molding Process

J Funct Biomater. 2024 Apr 15;15(4):102. doi: 10.3390/jfb15040102.

Abstract

The dermal-epidermal junction (DEJ), located between the dermal-epidermal layers in human skin tissue, plays a significant role in its function. However, the limitations of biomaterial properties and microstructure fabrication methods mean that most current tissue engineered skin models do not consider the existence of DEJ. In this study, a nanofiber membrane that simulates the fluctuating structure of skin DEJ was prepared by the composite molding process. Electrospinning is a technique for the production of nanofibers, which can customize the physical and biological properties of biomaterials. At present, electrospinning technology is widely used in the simulation of customized natural skin DEJ. In this study, four different concentration ratios of poly (lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanofiber membranes were prepared based on electrospinning technology. We selected a 15%PLGA + 5%PCL nanofiber membrane with mechanical properties, dimensional stability, hydrophilicity, and biocompatibility after physical properties and biological characterization. Then, the array-based microstructure model was prepared by three-dimensional (3D) printing. Subsequently, the microstructure was created on a 15%PLGA + 5%PCL membrane by the micro-imprinting process. Finally, the cell proliferation and live/dead tests of keratinocytes (HaCaTs) and fibroblasts (HSFs) were measured on the microstructural membrane and flat membrane. The results showed that 15%PLGA + 5%PCL microstructure membrane was more beneficial to promote the adhesion and proliferation of HaCaTs and HSFs than a flat membrane.

Keywords: 3D printing; PLGA-PCL nanofibers; electrospinning; micro-imprinting; microstructure.