Dual-Delivery Temperature-Sensitive Hydrogel with Antimicrobial and Anti-Inflammatory Brevilin A and Nitric Oxide for Wound Healing in Bacterial Infection

Gels. 2024 Mar 24;10(4):219. doi: 10.3390/gels10040219.

Abstract

Bacterial infections impede the wound healing process and can trigger local or systemic inflammatory responses. Therefore, there is an urgent need to develop a dressing with antimicrobial and anti-inflammatory properties to promote the healing of infected wounds. In this study, BA/COs/NO-PL/AL hydrogels were obtained by adding brevilin A (BA) camellia oil (CO) submicron emulsion and nitric oxide (NO) to hydrogels consisting of sodium alginate (AL) and Pluronic F127 (PL). The hydrogels were characterized through dynamic viscosity analysis, differential scanning calorimetry, and rheology. They were evaluated through anti-inflammatory, antimicrobial, and wound healing property analyses. The results showed that BA/COs/NO-PL/AL hydrogels were thermo-responsive and had good ex vivo and in vivo anti-inflammatory activity, and they also exhibited strong antimicrobial activity against methicillin-resistant Staphylococcus aureus Pseudomonas aeruginosa (MRPA) and methicillin-resistant Staphylococcus aureus (MRSA). They were able to effectively promote healing of the infected wound model and reduce inflammation and bacterial burden. H&E and Masson's staining showed that BA/COs/NO-PL/AL hydrogels promoted normal epithelial formation and collagen deposition. In conclusion, BA/COs/NO-PL/AL hydrogels are promising candidates for promoting the healing of infected wounds.

Keywords: Pluronic F127; S-nitrosoglutathione; anti-inflammatory; antibacterial; brevilin A; hydrogel; wound healing.