Hydrogen Storage Capacity of Cobalt Cluster Ions

J Phys Chem A. 2024 May 9;128(18):3516-3528. doi: 10.1021/acs.jpca.3c08445. Epub 2024 Apr 26.

Abstract

The adsorption of H2 on gas-phase Con± (n = 5-12) clusters at 300 K and the desorption of H2 from ConHm± upon heating were studied experimentally by combining thermal desorption spectrometry and mass spectrometry to elucidate the hydrogen storage property of the Co clusters. Hydrogen atoms adsorbed well on Con+ (n = 5, 10-12) and Con- (n = 5-12) at 300 K to form ConHm±. The atomic ratios, m/n, for ConHm- (0.9-1.4) were higher than those for ConHm+ (0.2-1.1). According to density functional theory (DFT) calculations, the first few H2 molecules had a tendency to dissociatively adsorb onto the Co clusters. Further, the bonding nature of the H atoms was ionic, similar to the H atoms in the metallic hydrides. In contrast, H2, adsorbed molecularly, was explained in terms of σ complex formation. H2 molecules were desorbed from the clusters upon heating. The temperature dependences showed that ConHm- released H2 at a higher temperature (700-800 K) than ConHm+ (600-700 K), suggesting that Con- should have a higher affinity to hydrogen than Con+. The desorption temperatures were lower than those of VnHm+, which was consistent with the fact that the adsorption energies of H2 were lower for the Co clusters than those for the V clusters. The low adsorption energies were ascribed to their large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps in the Co clusters.