The Asymmetry Observed between the Effects of Photon-Phonon Coupling and Crystal Field on the Fine Structure of Fluorescence and Spontaneous Four-Wave Mixing in Ion-Doped Microcrystals

Nanomaterials (Basel). 2024 Apr 12;14(8):671. doi: 10.3390/nano14080671.

Abstract

In this paper, we explore the asymmetry observed between the effects of photon-phonon coupling (nested-dressing) and a crystal field (CF) on the fine structure of fluorescence (FL) and spontaneous four-wave mixing (SFWM) in Eu3+: BiPO4 and Eu3+: NaYF4. The competition between the CF and the strong photon-phonon dressing leads to dynamic splitting in two directions. The CF leads to static splitting in one direction under weak phonon dressing. The evolution from strong dressing to weak dressing results in spectral asymmetry. This spectral asymmetry includes out-of-phase FL and in-phase SFWM. Further, the large ratio between the dressing Rabi frequency and the de-phase rate leads to strong FL and SFWM asymmetry due to photon-phonon constructive dressing. Moreover, the experimental results suggest the analogy of a spectra asymmetry router with a channel equalization ratio of 96.6%.

Keywords: asymmetry; crystal field splitting; photon–phonon dressing.