Acid-based deep eutectic solvents followed by GFAAS for the speciation of As(III), As(V), total inorganic arsenic and total arsenic in rice samples

Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2024 Apr 26:1-12. doi: 10.1080/19440049.2024.2344225. Online ahead of print.

Abstract

In the present study, an efficacious, safe, inexpensive and eco-friendly microextraction was provided by deep eutectic solvents based on dispersive liquid-liquid microextraction (DLLME - DES) followed by GFAAS. A series of DESs were synthesised using l-menthol as hydrogen bond acceptor (HBA) and carboxylic acids with 4, 6, 8 and 10 carbon atoms as hydrogen bond donors (HBD). The synthesised DESs were used as extractants of arsenic ions. Under optimised conditions, good linearity with coefficient of determination (r2) 0.992 and an acceptable linear range of 0.3-100 µg kg-1 was obtained. The limit of detection was 0.1 µg kg-1 (S/N = 3) for arsenite (As(III)) ions, and a high enrichment factor (EF = 200) was obtained. The enhancement factor and extraction recovery (ER%) of the method were 340 and 60%, respectively. RSDs including inter- and intra-day ranged from 3.2% to 5.8% in three examined concentrations. After a specific digestion, the capability of the synthesised DES in the extraction of As(III) from rice was tested. Total inorganic arsenic was separated similarly after reduction of arsenate (As(V)) to As(III), and As(V) concentration was calculated by difference. Using a second digestion method, total arsenic concentration (sum of organic and inorganic arsenic) in the samples was determined.

Keywords: Arsenic speciation; dispersive liquid–liquid microextraction; graphite furnace atomic absorption spectrometry; hydrophobic deep eutectic solvent; rice analysis.