Highly Stable Silicon Anode Enabled by a Water-Soluble Tannic Acid Functionalized Dual-Network Binder

ACS Appl Mater Interfaces. 2024 Apr 26. doi: 10.1021/acsami.4c03768. Online ahead of print.

Abstract

Silicon (Si), a high-capacity electrode material, is crucial for achieving high-energy-density lithium-ion batteries. However, Si suffers from poor cycling stability due to its significant volume changes during operation. In this work, a tannic acid functionalized aqueous dual-network binder with an intramolecular tannic acid functionalized network has been synthesized, which is composed of covalent-cross-linked polyamide and ionic-cross-linked alginate (Alg(Ni)-PAM-TA), and employed as an advanced binder for stabilizing Si anodes. The resultant Alg(Ni)-PAM-TA binder, incorporating diverse functional groups including amide, carboxylic acid, and dynamic hydrogen bonds, can easily interact with both Si nanoparticles and the Cu foil, thereby facilitating the formation of a highly resilient network characterized by exceptional adhesion strength. Moreover, molecular dynamics (MD) simulations indicate that the Alg(Ni)-PAM-TA network shows an increased intramolecular hydrogen bond number with increasing concentration of TA and a decreased intramolecular hydrogen bond between PAM and Alg as a result of the aggregation behavior of tannic acids themselves. Consequently, the binder significantly enhances the Si electrode's integrity throughout repeated charge/discharge cycles. At a current density of 0.84 A g-1, the Si electrode retains a capacity of 1863.4 mAh g-1 after 200 cycles. This aqueous binder functionalized with the intramolecular network via the incorporation of TA molecules holds great promise for the development of high-energy-density lithium-ion batteries.

Keywords: alginate; aqueous binder; dual-network; lithium-ion batteries; silicon; tannic acid.