Engineering of an EPHA2-Targeted Monobody for the Detection of Colorectal Cancer

Cancer Genomics Proteomics. 2024 May-Jun;21(3):285-294. doi: 10.21873/cgp.20447.

Abstract

Background/aim: Colorectal cancer (CRC) is the third most common cancer worldwide, and is second only to lung cancer with respect to cancer-related deaths. Noninvasive molecular imaging using established markers is a new emerging method to diagnose CRC. The human ephrin receptor family type-A 2 (hEPHA2) oncoprotein is overexpressed at the early, but not late, stages of CRC. Previously, we reported development of an E1 monobody that is specific for hEPHA2-expressing cancer cells both in vitro and in vivo. Herein, we investigated the ability of the E1 monobody to detect hEPHA2 expressing colorectal tumors in a mouse model, as well as in CRC tissue.

Materials and methods: The expression of hEPHA2 on the surface of CRC cells was analyzed by western blotting and flow cytometry. The targeting efficacy of the E1 monobody for CRC cells was examined by flow cytometry, and immunofluorescence staining. E1 conjugated to the Renilla luciferase variant 8 (Rluc8) reporter protein was used for in vivo imaging in mice. Additionally, an enhanced green fluorescence protein (EGFP) conjugated E1 monobody was used to check the ability of the E1 monobody to target CRC tissue.

Results: The E1 monobody bound efficiently to hEPHA2-expressing CRC cell lines, and E1 conjugated to the Rluc8 reporter protein targeted tumor tissues in mice transplanted with HCT116 CRC tumor cells. Finally, E1-EGFP stained tumor tissues from human CRC patients, showing a pattern similar to that of an anti-hEPHA2 antibody.

Conclusion: The E1 monobody has utility as an EPHA2 targeting agent for the detection of CRC.

Keywords: Colorectal cancer; EPHA2; imaging; monobody.

MeSH terms

  • Animals
  • Cell Line, Tumor
  • Colorectal Neoplasms* / diagnosis
  • Colorectal Neoplasms* / genetics
  • Colorectal Neoplasms* / metabolism
  • Colorectal Neoplasms* / pathology
  • Humans
  • Mice
  • Mice, Nude
  • Receptor, EphA2* / genetics
  • Receptor, EphA2* / metabolism

Substances

  • Receptor, EphA2
  • EPHA2 protein, human