Sustainable and Environmentally Friendly Microwave Synthesis of Nano-Hydroxyapatite from Decarbonized Eggshells

Materials (Basel). 2024 Apr 16;17(8):1832. doi: 10.3390/ma17081832.

Abstract

The sustainable microwave (MW) synthesis of hydroxyapatite (HAp) from decarbonized eggshells was investigated. Decarbonization of eggshells, as a natural source of calcium carbonate (CaCO3), was carried out in the current study at ambient conditions to reduce the footprint of CO2 emissions on our environment where either calcination or acidic direct treatments of eggshells produce CO2 emissions, which is a major cause for global warming. Eggshell decarbonization was carried out via the chemical reaction with sodium hydroxide (NaOH) alkaline solution in order to convert eggshell waste into calcium hydroxide (Ca(OH)2) and simultaneously store CO2 as a sodium carbonate (Na2CO3) by-product which is an essential material in many industrial sectors. The produced Ca(OH)2 was mixed with ammonium dihydrogen phosphate (NH4H2PO4) reagent at pH~11 before being subjected to MW irradiation at 2.45 GHz frequency for 5 min using 800 Watts to prepare HAp. The prepared Nano-HAp was characterized using X-ray diffraction (XRD) where the crystal size was ~28 nm using the Scherrer equation. The elongated rod-like nano-HAp crystals were characterized using scanning electron microscopy (SEM) equipped with dispersive energy X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). MW synthesis of decarbonized eggshells is considered as a sustainable and environmentally friendly route to produce promising bioceramics such as nano-HAp. Concurrently, decarbonization of eggshells offers the ability to store CO2 as a high value-added Na2CO3 material.

Keywords: eggshell decarbonization; microwave synthesis; nano-hydroxyapatite; rods-like crystals; sustainability; waste management.