Preparation and Properties of Attapulgite/Brucite Fiber-Based Highly Absorbent Polymer Composite

Materials (Basel). 2024 Apr 20;17(8):1913. doi: 10.3390/ma17081913.

Abstract

The ATP-BF-P(HEC-AA-AMPS) composite highly absorbent polymer was copolymerized with acrylic acid (AA) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) using an aqueous solution method with attapulgite (ATP) and attapulgite (ATP) as a matrix. The prepared ATP-BF-P(HEC-AA-AMPS) was characterized in terms of microstructure and tested for its water absorption capacity, water retention properties, and pH dynamic sensing ability. The results showed that the synthesized ATP-BF-P(HEC-AA-AMPS) had a rough and porous surface and a high water absorption capacity and rate, almost reaching the maximum water absorption around 20 min, and demonstrated excellent water retention performance at low and medium temperatures. ATP-BF-P(HEC-AA-AMPS) has a sensitive dynamic sensing ability in different pH solutions, with a high swelling capacity between pH 6.0 and 10.0. When the pH value exceeded 10.0, the swelling rate decreased rapidly. Additionally, the thermal stability and mechanical strength of the highly absorbent polymers were significantly improved after blending with ATP and BF.

Keywords: attapulgite; brucite fiber; highly absorbent polymer; inorganic composite; swelling properties.