Comparative Genomics of Lotus japonicus Reveals Insights into Proanthocyanidin Accumulation and Abiotic Stress Response

Plants (Basel). 2024 Apr 20;13(8):1151. doi: 10.3390/plants13081151.

Abstract

Lotus japonicus, is an important perennial model legume, has been widely used for studying biological processes such as symbiotic nitrogen fixation, proanthocyanidin (PA) biosynthesis, and abiotic stress response. High-quality L. japonicus genomes have been reported recently; however, the genetic basis of genes associated with specific characters including proanthocyanidin distribution in most tissues and tolerance to stress has not been systematically explored yet. Here, based on our previous high-quality L. japonicus genome assembly and annotation, we compared the L. japonicus MG-20 genome with those of other legume species. We revealed the expansive and specific gene families enriched in secondary metabolite biosynthesis and the detection of external stimuli. We suggested that increased copy numbers and transcription of PA-related genes contribute to PA accumulation in the stem, petiole, flower, pod, and seed coat of L. japonicus. Meanwhile, According to shared and unique transcription factors responding to five abiotic stresses, we revealed that MYB and AP2/ERF play more crucial roles in abiotic stresses. Our study provides new insights into the key agricultural traits of L. japonicus including PA biosynthesis and response to abiotic stress. This may provide valuable gene resources for legume forage abiotic stress resistance and nutrient improvement.

Keywords: Lotus japonicus; RNA-seq; abiotic stress; comparative genomics; proanthocyanidins.