ZnO-CeO2 Hollow Nanospheres for Selective Determination of Dopamine and Uric Acid

Molecules. 2024 Apr 15;29(8):1786. doi: 10.3390/molecules29081786.

Abstract

ZnO-CeO2 hollow nanospheres have been successfully synthesized via the hard templating method, in which CeO2 is used as the support skeleton to avoid ZnO agglomeration. The synthesized ZnO-CeO2 hollow nanospheres possess a large electrochemically active area and high electron transfer owing to the high specific surface area and synergistic effect of ZnO and CeO2. Due to the above advantages, the resulting ZnO-CeO2 hollow spheres display high sensitivities of 1122.86 μA mM-1 cm-2 and 908.53 μA mM-1 cm-2 under a neutral environment for the selective detection of dopamine and uric acid. The constructed electrochemical sensor shows excellent selectivity, stability and recovery for the selective analysis of dopamine and uric acid in actual samples. This study provides a valuable strategy for the synthesis of ZnO-CeO2 hollow nanospheres via the hard templating method as electrocatalysts for the selective detection of dopamine and uric acid.

Keywords: ZnO-CeO2; dopamine detection; electrochemical sensor; hollow spheres; uric acid detection.