Study on the Spatial Damage Characteristics of Working Fluid in a Sandstone Reservoir and an Unplugged Fluid System

ACS Omega. 2024 Apr 10;9(16):18400-18411. doi: 10.1021/acsomega.4c00252. eCollection 2024 Apr 23.

Abstract

Due to its good physical properties and low pressure coefficient, the K75 reservoir is prone to leakage and intrusion of drilling and completion fluids during well construction, resulting in plugging of the borehole throat, which will inevitably affect the injection and recovery capacity of the gas well. In order to ensure the strong injection and production capacity of the K75 reservoir, this paper clarifies the reservoir space damage characteristics under different pressure differences and different entry fluids by establishing physical simulation of the damage, selecting the optimal system of the decongestant, and conducting dynamic flow decongestion experiments, as well as combining with the characterization means of the continuous scanning system of the core and the permeability test of the gas measurement. The test results show that the degree of damage of the same working fluid increases with the increase of differential pressure of repulsion, and the degree of damage of sequential working fluids (drilling fluid, completion fluid, and perforating fluid) is greater than that of drilling fluid damage under the same differential pressure of repulsion. In order to relieve the damage of wellbore working fluids, a set of multifunctional, low-corrosion composite acid system formulas was selected through rock powder, mud cake dissolution experiments, and dynamic flow unblocking experiments; the permeability recovery rate of this acid system after unblocking was more than 90%, which is widely applicable, and it is useful for the acidizing and unblocking practice in similar reservoirs.