Extravascular administration of IGF1R antagonists protects against aortic aneurysm in rodent and porcine models

Sci Transl Med. 2024 May;16(745):eadh1763. doi: 10.1126/scitranslmed.adh1763. Epub 2024 May 1.

Abstract

An abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. We identified plasma insulin-like growth factor 1 (IGF1) as an independent risk factor in patients with AAA by correlating plasma IGF1 with risk. Smooth muscle cell- or fibroblast-specific knockout of Igf1r, the gene encoding the IGF1 receptor (IGF1R), attenuated AAA formation in two mouse models of AAA induced by angiotensin II infusion or CaCl2 treatment. IGF1R was activated in aortic aneurysm samples from human patients and mice with AAA. Systemic administration of IGF1C, a peptide fragment of IGF1, 2 weeks after disease development inhibited AAA progression in mice. Decreased AAA formation was linked to competitive inhibition of IGF1 binding to its receptor by IGF1C and modulation of downstream alpha serine/threonine protein kinase (AKT)/mammalian target of rapamycin signaling. Localized application of an IGF1C-loaded hydrogel was developed to reduce the side effects observed after systemic administration of IGF1C or IGF1R antagonists in the CaCl2-induced AAA mouse model. The inhibitory effect of the IGF1C-loaded hydrogel administered at disease onset on AAA formation was further evaluated in a guinea pig-to-rat xenograft model and in a sheep-to-minipig xenograft model of AAA formation. The therapeutic efficacy of IGF1C for treating AAA was tested through extravascular delivery in the sheep-to-minipig model with AAA established for 2 weeks. Percutaneous injection of the IGF1C-loaded hydrogel around the AAA resulted in improved vessel flow dynamics in the minipig aorta. These findings suggest that extravascular administration of IGF1R antagonists may have translational potential for treating AAA.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Aortic Aneurysm, Abdominal* / drug therapy
  • Aortic Aneurysm, Abdominal* / metabolism
  • Aortic Aneurysm, Abdominal* / pathology
  • Aortic Aneurysm, Abdominal* / prevention & control
  • Disease Models, Animal*
  • Humans
  • Insulin-Like Growth Factor I* / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Rats
  • Receptor, IGF Type 1* / antagonists & inhibitors
  • Receptor, IGF Type 1* / metabolism
  • Signal Transduction / drug effects
  • Swine

Substances

  • Receptor, IGF Type 1
  • Insulin-Like Growth Factor I