Disentangling the impact of climate change, human activities, vegetation dynamics and atmospheric CO2 concentration on soil water use efficiency in global karst landscapes

Sci Total Environ. 2024 Apr 29:932:172865. doi: 10.1016/j.scitotenv.2024.172865. Online ahead of print.

Abstract

Soil Water Use Efficiency (SWUE), which quantifies the carbon gain against each unit of soil moisture depletion, represents an essential ecological parameter that delineates the carbon-water coupling within terrestrial ecosystems. However, the spatiotemporal dynamics of SWUE, its sensitivity to environmental variables, and the underlying driving mechanisms across various temporal scales in the global karst region are largely uncharted. This study utilized the sensitivity algorithm of partial least squares regression, partial differential equations, and elasticity coefficients to investigate the characteristics of SWUE variations across different climatic zones in the global karst region and their responsiveness to environmental variables. Moreover, the study quantified the individual contributions of climate variability, atmospheric carbon dioxide concentration, human activities, and vegetation changes to SWUE variations. The results indicated that SWUE across different climatic zones in the global karst region demonstrated an increasing trend from 2000 to 2018, with the most notable improvement observed in the humid zone. SWUE presented regular distribution and variation characteristics across different latitudinal zones at a monthly scale. The sensitivity of SWUE to precipitation was significantly higher compared to its responsiveness to other environmental factors. Additionally, the trend in SWUE's sensitivity to precipitation demonstrated the most significant change. The sensitivity of SWUE to various environmental factors and the trend of this sensitivity in the arid zone revealed significant variation compared to other climatic zones. Gross primary productivity and soil moisture were identified as the intrinsic factors influencing SWUE changes, contributing 16 % and - 84 %, respectively. Climate variability and human activities were identified as the primary exogenous factors contributing to the increase in SWUE, accounting for 76 % and 16 %, respectively. This study advances the understanding of carbon-water coupling in karst regions, providing significant insights into the ecological management of global karst environments amidst climate variations.

Keywords: Drought; Karst physiognomy; Partial derivative; Sensitivity; Soil water use efficiency.