Enhanced Aggregation-Induced Delayed Electrochemiluminescence Triggered by Spatial Perturbation of Organic Dots

Anal Chem. 2024 May 14;96(19):7780-7786. doi: 10.1021/acs.analchem.4c01643. Epub 2024 May 2.

Abstract

Development of highly efficient, heavy-metal-free electrochemiluminescence (ECL) materials is attractive but still challenging. Herein, we report an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) composed of a tert-butoxy-group-substituted benzophenone-dimethylacridine compound, which shows high ECL efficiency. The resultant ODs exhibit 2.1-fold higher ECL efficiency compared to control AIDECL-active ODs. Molecular stacking combined with theoretical calculations suggests that tert-butoxy groups effectively participate in the intermolecular interactions, further inhibiting the molecular motions in the aggregated states and thus accelerating radiative decay. On the basis of these ODs exhibiting excellent ECL performance, a proof-of-concept biosensor is constructed for the detection of miR-16 associated with Alzheimer's disease, which demonstrates excellent detection ability with the limit of detection of 1.7 fM. This work provides a new approach to improve the ECL efficiency and enriches the fundamental understanding of the structure-property relationship.