Rotational Spectrum of the Phenoxy Radical

J Phys Chem Lett. 2024 May 16;15(19):5063-5069. doi: 10.1021/acs.jpclett.4c00962. Epub 2024 May 3.

Abstract

We report the hyperfine-resolved rotational spectrum of the gas-phase phenoxy radical in the 8-25 GHz frequency range using cavity Fourier transform microwave spectroscopy. A complete assignment of its complex but well-resolved fine and hyperfine splittings yielded a precisely determined set of rotational constants, spin-rotation parameters, and nuclear hyperfine coupling constants. These results are interpreted with support from high-level quantum chemical calculations to gain detailed insight into the distribution of the unpaired π electron in this prototypical resonance-stabilized radical. The accurate laboratory rest frequencies enable studies of the chemistry of phenoxy in both the laboratory and space. The prospects of extending the present experimental and theoretical techniques to investigate the rotational spectra of isotopic variants and structural isomers of phenoxy and other important gas-phase radical intermediates that are yet undetected at radio wavelengths are discussed.