The impact on Cd bioavailability and accumulation in rice (Oryza sativa L.) induced by dry direct-seeding cultivation method in field-scale experiments

Sci Total Environ. 2024 May 3:933:172875. doi: 10.1016/j.scitotenv.2024.172875. Online ahead of print.

Abstract

Dry direct-seeded rice cultivation has gained popularity and expanded its cultivated area due to reduced labor requirements and water consumption. However, the impact of this cultivation method on cadmium (Cd) bioavailability in soil and the accumulation levels in grains remains uncertain. Field experiments were conducted in acidic soils at two locations in southern China to compare rice varieties and evaluate the dry direct-seeding method alongside the wet direct-seeding and traditional transplanting methods. Dry direct-seeded rice reached significantly higher Cd concentrations in its tissues starting from the heading stage than transplanted rice. Cd accumulation levels by the maturation stage in the brown rice of dry direct-seeded rice were 18.33 %-150.69 % higher than those of wet direct-seeded and transplanted rice, with a considerable ability to translocate Cd into brown rice. Furthermore, dry direct seeding decreased iron plaque formation, particularly in the amorphous Fe form; it resulted in high soil temperature and low moisture content during tillering, elevating Cd availability in the soil. Additionally, the proportion of ions and more labile forms of Cd in the soil solution was high. Moreover, the soil under dry direct seeding had high urease and acid phosphatase enzyme activities. However, low richness and diversity in the bacterial community were characterized by a significant increase in the relative abundance of Actinobacteria and Gammaproteobacteria at the class level, while exhibiting decreased relative abundances of Alphaproteobacteria, Bacilli, and KD4-96, along with fewer biomarkers. Nonetheless, these differences are gradually reduced during the maturation stage. Overall, although dry direct seeding offers several advantages, it is crucial to implement additional measures to mitigate the increased health risks linked to rice cultivation through this approach in Cd-contaminated areas.

Keywords: Bacterial community; Cadmium; Dry direct seeding; Rice; Soil microenvironment.