Glymphatic abnormality in systemic lupus erythematosus detected by diffusion tensor image analysis along the perivascular space

Rheumatology (Oxford). 2024 May 6:keae251. doi: 10.1093/rheumatology/keae251. Online ahead of print.

Abstract

Objectives: This study aimed to evaluate the activity of the glymphatic system in systemic lupus erythematosus (SLE) by a diffusion-based method termed "Diffusion Tensor Image Analysis aLong the Perivascular Space (DTI-ALPS)", and examined its correlations with morphological changes in the brain.

Methods: In this cross-sectional study, forty-five female patients with SLE and thirty healthy controls (HCs) were included. Voxel-based and surface-based morphometric analyses were performed to examine T1 weighted images, and diffusion tensor images were acquired to determine diffusivity along the x-, y-, and z-axes in the plane of the lateral ventricle body. The ALPS-index was calculated. The differences in values between SLE patients and HC group were compared using the independent samples t test or Mann-Whitney U test. For the correlations between the ALPS-index and brain morphological parameters, partial correlation analysis and Pearson's correlation analysis were conducted.

Results: SLE patients showed lower values for the ALPS-index in left (1.543 ± 0.141 vs 1.713 ± 0.175, p < 0.001), right (1.428 ± 0.142 vs 1.556 ± 0.139, p < 0.001) and whole (1.486 ± 0.121 vs 1.635 ± 0.139, p < 0.001) brain compared with the HC group. The reduced ALPS-index showed significant positive correlations with gray matter loss.

Conclusion: The non-invasive ALPS-index could serve as a sensitive and effective neuroimaging biomarker for individually quantifying glymphatic activity in patients with SLE. Glymphatic system abnormality may be involved in the pathophysiologic mechanism underlying central nervous system damage in SLE patients.

Keywords: Systemic lupus erythematosus; diffusion tensor image analysis along the perivascular space; glymphatic system; surface-based morphometry; voxel-based morphometry.