Hit Snooze: An Imperiled Hibernator Assesses Spring Snow Conditions to Decide Whether to Terminate Hibernation or Reenter Torpor

Ecol Evol Physiol. 2024 Jan-Feb;97(1):53-63. doi: 10.1086/729775.

Abstract

AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.

Keywords: behavioral plasticity; biologging; climate change; phenological optimization; physiological plasticity; seasonal environments; threatened species conservation.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Female
  • Hibernation* / physiology
  • Male
  • Sciuridae* / physiology
  • Seasons*
  • Snow*
  • Torpor / physiology