Parsing skin effect in a non-Hermitian spinless BHZ-like model

J Phys Condens Matter. 2024 May 22;36(33). doi: 10.1088/1361-648X/ad4940.

Abstract

This work comprehensively investigates the non-Hermitian skin effect (NHSE) in a spinless Bernevig-Hughes-Zhang -like model in one dimension. It is generally believed that a system with non-reciprocal hopping amplitudes demonstrates NHSE. However, we show that there are exceptions, and more in-depth analyses are required to decode the presence of NHSE or its variants in a system. The fascinating aspects of our findings, depending on the inclusion of non-reciprocity in the inter-orbital hopping terms, concede the existence of conventional NHSE or NHSE at both edges and even a surprising absence of NHSE. The topological properties and the (bi-orthogonal) bulk-boundary correspondence, enumerated via computation of the (complex) Berry phase and spatial localization of the edge modes, highlight the topological phase transitions occurring therein. Further, to facilitate a structured discussion of the non-Hermitian model, we split the results intoPTsymmetric and non-PTsymmetric cases with a view to comparing the two.

Keywords: complex berry phase; exceptional points; non-Hermitian skin effect; non-Hermitian topology; 𝒫𝒯 symmetry.