Actuation mechanism of a nanoscale drilling rig based on nested carbon nanotubes

Nanoscale. 2024 May 14. doi: 10.1039/d4nr00902a. Online ahead of print.

Abstract

With the increasing emphasis on health and the continuous improvement of medical standards, more and more micro/nano devices are being used in the medical field. However, the existing micro/nano devices cannot effectively solve various problems encountered in medical processes and achieve specific therapeutic effects. Based on this, this article designs a new type of nanoscale drilling rig. The nanoscale drilling rig is composed of double-layer nested carbon nanotubes with multiple electrodes, and is powered by an external power source, making it easy to perform long-term surgery in the human body. Through coding strategies, we can adjust the surface charge density and distribution of the nanoscale drilling rig, thereby controlling its periodical rotation and achieving precise medical treatment. In addition, in order to control the length of the nanoscale drill bit, meet the treatment needs of different parts of the human body, and reduce damage to the human body, we have designed a structure of ion electric double layers so that the drill bit can be fixed in different positions, reducing the risk of treatment to a certain extent. This drilling rig enriches the functions of micro/nano devices, which is beneficial for the development of the medical industry.