Treponema pallidum recombinant protein Tp0768 enhances the ability of HUVECs to promote neutrophil chemotaxis through TLR2/ER stress signaling pathway

J Leukoc Biol. 2024 May 15:qiae114. doi: 10.1093/jleuko/qiae114. Online ahead of print.

Abstract

Neutrophils are essential cells involved in inflammation. However, the specific mechanism of neutrophil chemotaxis induced by Treponema Pallidum (T. pallidum) remains unknow. In this study, human umbilical vein endothelial cells (HUVECs) were utilized as target cells to investigate the expression levels of chemokines when stimulated with different concentrations of Tp0768(also known as TpN44.5 or TmpA, a T. pallidum infection dependent antigen). The results indicated that Tp0768 treatment enhanced neutrophil chemotaxis in HUVECs, which was closely associated with the expression levels of CXCL1(C-X-C Motif Chemokine Ligand 1), CXCL2(C-X-C Motif Chemokine Ligand 2), and CXCL8(C-X-C Motif Chemokine Ligand 8, also known as interleukin-8). At the same time, the results show that Toll Like Receptor 2 (TLR2) signaling pathway is activated and endoplasmic reticulum stress (ER stress) occurs. Furthermore, the findings revealed that the use of protein kinase RNA-like endoplasmic reticulum kinase (PERK) and Immunoglobulin-Regulated Enhancer 1 (IRE1) inhibitors reduced the expression levels of CXCL1, CXCL2, and CXCL8. Additionally, inhibiting TLR2 significantly decreased the expression levels of ER stress-related proteins (PERK and IRE1), CXCL1, CXCL2, and CXCL8. Consequently, neutrophil chemotaxis was significantly inhibited after treatment with TLR2, PERK, and IRE1 inhibitors. These findings shed light on the role of Tp0768 in enhancing neutrophil chemotaxis in endothelial cells, providing a foundation for further exploration of syphilis pathogenesis and offering a new direction for the diagnosis and treatment of T. pallidum infection.

Keywords: Treponema pallidum; ER stress; TLR2; chemotaxis; inflammation; neutrophils.